決策樹會根據訓練資料產生一棵樹,依據訓練出來的規則來對新樣本進行預測。決策樹演算法可以使用不同的方式來評估分枝的好壞(亂度),例如像是Information gain、Gain ratio、Gini index。
從訓練資料找出規則,讓每一個決策能夠使訊息增益最大化,叫好比我們評估今天比賽是否舉行,天氣因子可能站比較大的因素,而Co2的濃度高低可能站的因子程度較低。
本系列教學簡報 PDF & Code 都可以從我的 GitHub 取得!
文章同時發表於: https://andy6804tw.github.io/crazyai-ml/12.決策樹
如果你對機器學習和人工智慧(AI)技術感興趣,歡迎參考我的線上免費電子書《經典機器學習》。這本書涵蓋了許多實用的機器學習方法和技術,適合任何對這個領域有興趣的讀者。點擊下方連結即可獲取最新內容,讓我們一起深入了解AI的世界!
👉 全民瘋AI系列 [經典機器學習] 線上免費電子書
👉 其它全民瘋AI系列 這是一個入口,匯集了許多不同主題的AI免費電子書